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Abstract—A hybrid full-wave analysis using finite-difference
time-domain (FDTD) and finite-element time-domain (FETD)
methods is developed to analyze locally arbitrarily shaped mi-
crowave structures. This hybrid method employs the standard
FDTD method with super-absorbing Mur’s first-order absorbing-
boundary condition (ABC) and the FETD method using the
second-order vector prism elements. An interpolation scheme is
proposed for communicating between the FDTD and FETD fields,
which will not require the effort of fitting the FETD mesh to
the FDTD cells in the interface region. This method is applied
to calculate the scattering parameters of single and multiple
cylindrical via holes in a microstrip structure. Applying FETD to
the via-hole grounds and FDTD to the remaining region preserves
the advantages of both FETD flexibility and FDTD efficiency.
A comparison of the results with the mode-matching data and
the FDTD staircasing data verifies the accuracy of the proposed
method.

Index Terms—Shape function, vector prism elements, via-hole
grounds.

I. INTRODUCTION

T HE finite-difference time-domain (FDTD) method has
a number of advantages in analyzing three-dimensional

(3-D) microwave structures due to its simplicity and numerical
efficiency [1], [2]. Making use of the uniform mesh in the
conventional FDTD algorithm does not require any special
mesh generation scheme and storage for the mesh. However,
the use of box-shaped Cartesian coordinate uniform meshes
in the conventional FDTD algorithm causes difficulties while
dealing with curved structures and locally detailed structures.
Typically, curved structures have been analyzed using the
staircasing approximations [3], which requires finer meshes
and dramatic increases in memory size as well as longer
computational time caused by using the smaller time-step
size to satisfy the Courant stability condition [4]. The same
problems can be encountered in employing very fine meshes
in the entire computational domain for the locally detailed
structures.

Several methods have been developed to overcome these
difficulties in the FDTD method. The nonorthogonal FDTD
algorithm has been introduced to solve uniform and uncurved,
but oblique structures [5], and later improved to analyze 3-D
structures including curved shapes [6], [7]. Using covariant
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and contravariant components of and fields to obtain
a finite-difference approximation of the integral forms of
Maxwell’s equations gives an important advantage in that
the nonorthogonal FDTD algorithm can have the same form
as the conventional FDTD algorithm. However, this method
still requires longer computational time and larger memory
size. The discrete surface integral (DSI) method has been also
proposed to analyze general structures [8]. This method can be
regarded as a generalization of the regular FDTD method since
it reduces to the conventional FDTD method when structured
orthogonal hexahedral grids are used. However, this method
needs large memory size due to the requirement for the dual
grid as well as the primary grid. A locally conformed FDTD
algorithm has been studied for efficiently analyzing locally
arbitrarily shaped structures [9]. This method performs the
conventional FDTD leap-frog scheme and then corrects the
field in order to take into account the metal structures which
do not conform to the FDTD mesh by using the integral
form of Maxwell’s equations. Different geometries require
different correction procedures, which can be a disadvantage
of this method.

The finite-element time-domain (FETD) method has also
been developed to improve flexibility in modeling structures
by retaining the advantage of time-domain analysis [10]–[12].
Although this method can have no geometric limitations in
modeling structures, it can be less efficient than the FDTD
method because it requires the system of equations to be solved
for each time step. Recently, a hybrid method incorporating
the FETD method into the FDTD method was developed
and applied to the electromagnetic scattering problem of two-
dimensional (2-D) circular-shaped dielectric cylinders [13]. By
conforming only the circular structures using FETD while
applying FDTD elsewhere, a tradeoff between the FETD
flexibility and the FDTD numerical efficiency can be obtained.
However, the FDTD and FETD mesh-matching method in
the interface region can contribute difficulty in the mesh
generation of the FETD region.

This paper proposes a new FDTD and FETD hybrid method
by introducing an interpolation scheme for communicating
between the FDTD field and the FETD field in the interface
region. In this method, one can avoid the effort of fitting the
FETD mesh to the FDTD cells in the interface. This hybrid
method is applied to analyze single and multiple via-hole
grounds in microstrip. This is a 3-D problem having both cylin-
drical and rectangular boundaries, as described in detail later.
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Fig. 1. The prism element.

Applying the FETD to the part of the FDTD region including
via-hole grounds and the FDTD elsewhere preserves the
advantages of both FDTD and FETD. In addition, changing the
structure inside the FETD region does not require any change
in the FDTD parameters, which can be a great advantage in
design sensitivity analysis because different structures can be
analyzed by changing only the FETD meshes. The comparison
between the scattering parameter results obtained with the
proposed hybrid method, mode-matching data [14], and FDTD
staircasing data verifies the accuracy of this analysis.

II. HYBRID-ANALYSIS TECHNIQUE USING FDTD AND FETD

The hybrid analysis proposed here employs the stan-
dard FDTD method with super-absorbing Mur’s first-order
absorbing-boundary condition (ABC) [15] and the FETD
method using the second-order vector prism element [16],
[17].

A. FETD Formulation

Starting from the source-free Maxwell’s two-curl equations
in a linear isotropic region, the vector-wave equation can be
obtained as

(1)

Applying the weak form formulation or the Galerkin’s proce-
dure to (1) gives

(2)

where is the weighting function defined using the second-
order vector prism element [16], [17].

The prism element is composed of 30 edge elements, as
shown in Fig. 1. With the shape function, the electric field
inside the prism element can be interpolated as

(3)

where

(4)

and

(5)

In (4), and are the unit vector of theth edge in the prism
element (Fig. 1). Therefore, and represent the
state variables of the th edge in FETD, which can also
be interpreted as electric fields. In (3) and (5),’s are the
barycentric coordinates of a triangle, and ’s are the first-
order Lagrange interpolation polynomials between upper and
lower triangular faces, which are expressed as [16], [17]

(6)

and

(7)

The variables and in (7) are the -coordinates of the
upper triangle and the lower triangle in the prism element and

corresponds to the difference betweenand .
In the finite differencing of (2) in time, the unconditionally

stable backward difference is used [12], which gives

(8)
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Fig. 2. The FDTD and FETD interface region.

where

(9)

is the number of the total edge elements and
represents the state variable vector at the time-step.

B. Hybridizing the FDTD and FETD Analyses

The right-hand side (RHS) of (8) (the load vector of the
FETD) shows the necessity of knowing the electric-field values
for two previous time steps, as well as the boundary values
at the present time step. The boundary values calculated from
FDTD become the Dirichlet boundary conditions on the FETD
boundary, and are used to solve the inner field of the FETD
region. The FETD region is chosen to be a brick replacing the
part of the FDTD region and includes the locally arbitrarily
shaped structures. This choice of FETD region provides a great
advantage when different arbitrarily shaped structures need to
be analyzed, because only the FETD mesh change will be
required without affecting the FDTD variables.

Fig. 2 shows the FDTD and FETD interface region in a
2-D view. One cell size of FDTD region is to be overlapped
in the FETD region. In the FDTD time-marching procedure

, , and are
updated, but the FDTD boundary value cannot
be updated because does not exist.
The updated interface values are employed in the FETD
through the surface integrals of (9) to calculate the inner
field in the FETD domain. The calculated inner field is
used to update the FDTD boundary value, .
Once is updated, the can

(a)

(b)

Fig. 3. Interpolation scheme for communicating between FDTD and FETD
fields at the interface. (a) FETD! FDTD. (b) FDTD! FETD.

Fig. 4. The regular brick element.

be calculated from the -field updating procedure of
FDTD. This completes one time-marching procedure of the
hybrid method.

This hybrid method makes use of an interpolation scheme
in communicating between the FETD and FDTD fields at the
interface. Fig. 3 explains this communication method. After
the FETD calculation, the FDTD interface field is interpolated
using the FETD prism element shape function (3). On the
other hand, the FETD interface field can be interpolated using
the regular brick element shape function with the FDTD
interface field. Fig. 4 shows the regular brick element [18].
By substituting the FDTD interface field to the edge elements
of the regular brick element, the electric field inside the cell
can be interpolated as

(10)
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Fig. 5. The via-hole grounded microstrip.

where ’s are defined as

(11)

and can be derived from (11) using the cyclical
relationships of , , . The , , and correspond to the

, , and of the FDTD cell. Now, the FETD interface
field can be easily calculated using (4). This scheme is more
general than the FDTD and FETD mesh-matching method [13]
because the mesh-matching effort is avoided.

III. N UMERICAL RESULTS

This hybrid method was applied to characterize the cylin-
drical via-hole grounds in microstrip. The via-hole region is
replaced by the FETD region, as shown in Fig. 5. Since the
microstrip and ground plane coincide with the top and the
bottom boundaries of the FETD region, the Dirichlet boundary
conditions are applied to the top and the bottom as well as the
via-hole cylinder wall. This reduces the matrix size in the
FETD analysis and increases the computational efficiency.

The parameters of the first analyzed via-hole grounded
microstrip structure are as follows: via-hole diameter is 0.6
mm, microstrip width is 2.3 mm, and substrate thickness is
0.794 mm. Lastly, the substrate has a low dielectric constant
( ). Fig. 6(a) shows the cross-sectional view of
the FETD mesh for the 0.6-mm diameter via hole, which
was employed in the hybrid method. For the good quality
triangular meshes, the Delaunay tessellation algorithm was
used. The same structure was also simulated using the FDTD
staircasing approximations. Fig. 7 depicts the cross section
of the FDTD staircasing model of the via hole. In order
to get the resolution in Fig. 7, the 2.3-mm-wide microstrip
was divided into 40 cells. In the hybrid method, only six
cells were used for the microstrip in the FDTD region and

(a) (b)

(c) (d)

Fig. 6. FETD meshes for the via holes. (a)2r = 0:6 mm, (b) 2r = 0:4

mm, (c) 2r = 0:3 mm, and (d)2r = 0:3 mm.

Fig. 7. FDTD staircasing model for the 0.6-mm diameter via hole.

4 3 4 FDTD cells were replaced by the FETD region
among the total 60 20 100 FDTD cells. Fig. 8 compares
the ’s of this via-hole grounded microstrip calculated by
this hybrid method, the mode-matching method [14], and the
FDTD staircasing approximations. A very good agreement
was observed between the hybrid method data and the mode-
matching data. In the next step, the via-hole grounds with
0.4-mm diameter [as shown in Fig. 6(b)] were analyzed, and
the result is shown in Fig. 9. The hybrid method gives a good
prediction of for various via-hole diameters.

Practically, the ground effect of a large diameter via hole
can be obtained using multiple small diameter via holes. To
begin with, the two via-hole problem was chosen, as shown
in Fig. 6(c). Both via holes have the same diameter (
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Fig. 8. jS21j of the via-hole grounded microstrip (�r = 2:32, w = 2:3

mm, h = 0:794 mm, 2r = 0:6 mm).

Fig. 9. jS21j of the via-hole grounded microstrip (�r = 2:32, w = 2:3

mm, h = 0:794 mm).

mm). For reference, the two via-hole grounds with the square
via holes ( mm) were also analyzed using only
the FDTD method. Fig. 10 shows the square via holes in the
FDTD cells. The ’s of these via-hole grounds are shown
in Fig. 11. The result of the via-hole grounded microstrip
with two circular via holes is very close to that of the via-
hole grounded microstrip with one circular via hole having
larger diameter size ( mm). The via-hole grounded
microstrip with two square via holes shows lower than
one with circular ones (Fig. 11). This result is shown to be
reasonable because the effective via-hole area of the square
via holes is larger than the circular via holes. In the next step,
three via holes were analyzed for the grounded microstrip.
Fig. 6(d) shows the cross-sectional view of the three via-hole
grounds. of the three via-hole grounds is at least 3 dB less
than of the two via-hole grounds over a wide frequency
band (Fig. 12).

Fig. 10. The FDTD modeling for the two via holes (�r = 2:32, w = 2:3

mm, h = 0:794 mm, a = b = 0:3 mm).

Fig. 11. jS21j of the grounded microstrip with two via holes (�r = 2:32,
w = 2:3 mm, h = 0:794 mm).

At this moment, it is worthwhile to mention that only the
FETD meshes were changed for analyzing four different via-
hole grounds without affecting the FDTD variables. In Fig. 6,
one can notice that the outer boundaries of all the FETD
meshes are fixed and correspond to 44 FDTD cells. For
staircasing approximations, the cell size and thesize need
to be changed for different structures. Therefore, the hybrid
method is more suitable for investigating the design sensitivity
of locally arbitrarily shaped structures. For example, one can
analyze circuit performance according to the variations of the
design parameters, such as structure geometries.

This hybrid method makes use of the quasi-minimal residue
(QMR) iterative method [19] to solve the system of equations
in FETD for each time step. Solving the system of equations
for every time step can be inefficient. However, the FETD
region in this hybrid method occupies only a small part of the
entire domain and the overall computational efficiency is not
affected. For example, the number of edge elements for the
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Fig. 12. jS21j of the via-hole grounded microstrip (�r = 2:32, w = 2:3

mm, h = 0:794 mm).

0.6-mm diameter via-hole ground is 448. The hybrid method
requires 23 Mb and takes 8.1 s for one time step running on a
Sun SPARC station 20. In the meantime, the FDTD staircasing
approximations (Fig. 7) using a total of 14040 180 cells
require 54 Mb and takes 7.2 s for one time step running in
the same machine. Since the size of the FDTD staircasing
approximations is chosen to be 2.5 times less than thesize
of the hybrid method ( s), the computational
time of the FDTD staircasing is at least two times longer than
that of the hybrid method.

IV. CONCLUSION

A hybrid full-wave analysis using FDTD and FETD meth-
ods has been introduced and applied to successfully character-
ize via-hole grounded microstrips. This method incorporates
the conventional FDTD method using the super-absorbing
Mur’s first-order ABC and the FETD method having the
second-order vector prism element as the shape function. The
interpolation scheme for communicating between the FDTD
and FETD fields at the interface, which is proposed in this
analysis, does not require the effort of fitting the FETD mesh
to the FDTD cells at the interface region. Four different via-
hole ground structures have been analyzed by changing only
the FETD mesh without affecting the FDTD parameters. This
can be a great advantage for design sensitivity analysis of
locally arbitrarily shaped structures. The required memory size
and the computational time of the hybrid method have also
been compared with those of the staircasing method, which
shows the efficiency of the hybrid method. The accuracy of
the hybrid method is verified using the mode-matching method
and the FDTD staircasing approximations. This hybrid method
can be applied toward analyzing 3-D locally arbitrarily shaped
structures accurately and efficiently.
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